3.2022 \(\int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{5/2}} \, dx\)

Optimal. Leaf size=129 \[ \frac{c d \tan ^{-1}\left (\frac{\sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d^2-a e^2}}\right )}{e^{3/2} \sqrt{c d^2-a e^2}}-\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x)^{3/2}} \]

[Out]

-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(e*(d + e*x)^(3/2))) + (c*d*ArcTan
[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt
[d + e*x])])/(e^(3/2)*Sqrt[c*d^2 - a*e^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.219051, antiderivative size = 129, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 39, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077 \[ \frac{c d \tan ^{-1}\left (\frac{\sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d^2-a e^2}}\right )}{e^{3/2} \sqrt{c d^2-a e^2}}-\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^(5/2),x]

[Out]

-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(e*(d + e*x)^(3/2))) + (c*d*ArcTan
[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt
[d + e*x])])/(e^(3/2)*Sqrt[c*d^2 - a*e^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 53.3922, size = 119, normalized size = 0.92 \[ - \frac{c d \operatorname{atanh}{\left (\frac{\sqrt{e} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{\sqrt{d + e x} \sqrt{a e^{2} - c d^{2}}} \right )}}{e^{\frac{3}{2}} \sqrt{a e^{2} - c d^{2}}} - \frac{\sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{e \left (d + e x\right )^{\frac{3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(5/2),x)

[Out]

-c*d*atanh(sqrt(e)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/(sqrt(d + e*x)
*sqrt(a*e**2 - c*d**2)))/(e**(3/2)*sqrt(a*e**2 - c*d**2)) - sqrt(a*d*e + c*d*e*x
**2 + x*(a*e**2 + c*d**2))/(e*(d + e*x)**(3/2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.242975, size = 113, normalized size = 0.88 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (-\frac{c d (d+e x) \tanh ^{-1}\left (\frac{\sqrt{e} \sqrt{a e+c d x}}{\sqrt{a e^2-c d^2}}\right )}{\sqrt{a e^2-c d^2} \sqrt{a e+c d x}}-\sqrt{e}\right )}{e^{3/2} (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^(5/2),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(-Sqrt[e] - (c*d*(d + e*x)*ArcTanh[(Sqrt[e]*Sqrt[
a*e + c*d*x])/Sqrt[-(c*d^2) + a*e^2]])/(Sqrt[-(c*d^2) + a*e^2]*Sqrt[a*e + c*d*x]
)))/(e^(3/2)*(d + e*x)^(3/2))

_______________________________________________________________________________________

Maple [A]  time = 0.03, size = 163, normalized size = 1.3 \[{\frac{1}{e} \left ( -{\it Artanh} \left ({e\sqrt{cdx+ae}{\frac{1}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}}}} \right ) xcde-{\it Artanh} \left ({e\sqrt{cdx+ae}{\frac{1}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}}}} \right ) c{d}^{2}-\sqrt{cdx+ae}\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e} \right ) \sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+aed} \left ( ex+d \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{cdx+ae}}}{\frac{1}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(5/2),x)

[Out]

(-arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*x*c*d*e-arctanh(e*(c*d*x+
a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*c*d^2-(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1
/2))*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)/(e*x+d)^(3/2)/(c*d*x+a*e)^(1/2)/e/(
(a*e^2-c*d^2)*e)^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(e*x + d)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.227731, size = 1, normalized size = 0.01 \[ \left [\frac{{\left (c d e^{2} x^{2} + 2 \, c d^{2} e x + c d^{3}\right )} \log \left (-\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (c d^{2} e - a e^{3}\right )} \sqrt{e x + d} +{\left (c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2}\right )} \sqrt{-c d^{2} e + a e^{3}}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{-c d^{2} e + a e^{3}} \sqrt{e x + d}}{2 \,{\left (e^{3} x^{2} + 2 \, d e^{2} x + d^{2} e\right )} \sqrt{-c d^{2} e + a e^{3}}}, -\frac{{\left (c d e^{2} x^{2} + 2 \, c d^{2} e x + c d^{3}\right )} \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{c d^{2} e - a e^{3}} \sqrt{e x + d}}{c d e^{2} x^{2} + a d e^{2} +{\left (c d^{2} e + a e^{3}\right )} x}\right ) + \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{c d^{2} e - a e^{3}} \sqrt{e x + d}}{{\left (e^{3} x^{2} + 2 \, d e^{2} x + d^{2} e\right )} \sqrt{c d^{2} e - a e^{3}}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(e*x + d)^(5/2),x, algorithm="fricas")

[Out]

[1/2*((c*d*e^2*x^2 + 2*c*d^2*e*x + c*d^3)*log(-(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^
2 + a*e^2)*x)*(c*d^2*e - a*e^3)*sqrt(e*x + d) + (c*d*e^2*x^2 + 2*a*e^3*x - c*d^3
 + 2*a*d*e^2)*sqrt(-c*d^2*e + a*e^3))/(e^2*x^2 + 2*d*e*x + d^2)) - 2*sqrt(c*d*e*
x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d^2*e + a*e^3)*sqrt(e*x + d))/((e^3*x^2
 + 2*d*e^2*x + d^2*e)*sqrt(-c*d^2*e + a*e^3)), -((c*d*e^2*x^2 + 2*c*d^2*e*x + c*
d^3)*arctan(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d^2*e - a*e^3)*sq
rt(e*x + d)/(c*d*e^2*x^2 + a*d*e^2 + (c*d^2*e + a*e^3)*x)) + sqrt(c*d*e*x^2 + a*
d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d^2*e - a*e^3)*sqrt(e*x + d))/((e^3*x^2 + 2*d*e^
2*x + d^2*e)*sqrt(c*d^2*e - a*e^3))]

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(5/2),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(e*x + d)^(5/2),x, algorithm="giac")

[Out]

Timed out